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Abstract— Mobile Brain/Body Imaging (MoBI) is an emerg-
ing non-invasive approach to investigate human brain activity
and motor behavior associated with cognitive processes in
natural conditions. MoBI studies and analyses pipelines com-
bine brain measurements, e.g. Electroencephalography (EEG),
with motion data as participants conduct tasks with near-
natural behavior. However, within this field, standard source
decomposition and reconstruction pipelines largely rely on
unsupervised blind source separation (BSS) approaches and do
not consider movement information to guide the decomposition
of oscillatory brain sources. We propose the use of a super-
vised spatial filtering method, Source Power Co-modulation
(SPoC), for extracting source components that co-modulate with
body motion. Further, we introduce a method to validate the
quality of oscillatory sources in MoBI studies. We illustrate
the approach to investigate the link between hand and head
movement kinematics and power dynamics of EEG sources
while participants explore an invisible maze in virtual reality.
Stable oscillatory source envelopes correlating with hand and
head motion were isolated in all subjects, with median ρ = .13
for all sources and median ρ = .16 for sources passing the
selection criteria. The results indicate that it is possible to
improve movement related source separation to further guide
our understanding of how movement and brain dynamics
interact.

I. INTRODUCTION

A key aspect of better understanding normal and patholog-
ical brain function is investigating the brain dynamics of hu-
mans as they act in their natural environments. Non-invasive
recordings of brain dynamics during ongoing unrestricted
movements can provide valuable insight into the interplay
between locomotion and mental processes, providing an
enhanced understanding of spatial cognition, movement dis-
orders, and rehabilitation approaches. However, investigating
and analyzing human brain activity during active behavior in
naturalistic conditions remains a fundamental challenge for
established brain imaging approaches. Mobile Brain/Body
Imaging (MoBI [1], [2]) is one approach leveraging multi-
modal data acquisition and analyses pipelines to overcome
restrictions of traditional brain imaging methods that require
participants to move as little as possible.
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Fig. 1. Invisible Maze Task, A Participant from a birds eye view. B
Participants are instructed to explore four different mazes and return to
the start. C First-person view in binocular ”VR optics” of a wall touch. D
Top: Participants draw a top-down view of the explored maze. Participant
is equipped with 160 channels wireless EEG, head-mounted virtual reality
goggles and LEDs for motion capture. Bottom: drawn sketch map. Find a
detailed description in [5].

Due to its high temporal resolution and lightweight hard-
ware, Electroencephalography (EEG) is the most prominent
method of acquiring and interpreting complex brain dy-
namics in moving participants. EEG measures the electrical
activity of the brain through sensors placed on the scalp and,
after processing, the measured oscillatory activity may be
linked to sensory, cognitive, and motor processes [3]. One
challenge of using EEG is the diminished signal to noise ratio
when participants move through space, as natural movement
causes severe artifacts challenging the isolation of sources
of interest. Current approaches address this challenge by
applying blind source separation (BSS), a process in which
sources are estimated in an unsupervised manner [3], [4]. A
major drawback of using BSS methods such as Independent
Components Analysis (ICA) is that they do not consider
motion information while estimating source components.
Considering motion information poses the advantages of (1)
extracting sources functionally related to the task of interest
(in MoBI settings), (2) improving the signal-to-noise ratio,



and (3) isolating artifactual sources related to task irrelevant
motion information.

We propose the use of a supervised spatial filtering method
to find oscillatory sources related to hand and head kinemat-
ics. We apply this method to extract source components as
participants conduct the Invisible Maze Task (IMT)–a MoBI
experiment in which participants navigate visually sparse
mazes in virtual reality (VR) [5]. Extracted components are
shown to correlate with motion profiles across different fre-
quency ranges. We discuss an application in which extraction
of sources using movement information helps addressing
questions about movement influencing cognitive phenomena.

II. METHODS

The Generative Model of EEG. Let the electromagnetic
field recordings measured by N x EEG channels over t time
points be represented by the multivariate variable x(t) ∈
RNx . Further, let there be N s unknown neural sources,
where s(t) expresses the activity of sources across time. The
generative model projecting sources to observed channels can
be expressed linearly as:

x(t) = As(t) (1)

where A ∈ RNx×Ns contains a spatial pattern a ∈ RNx

corresponding to a source component in each column. An
estimate for each underlying source ŝi(t) can be computed
using w ∈ RNx such that ŝi(t) = wi

Tx(t), where the spatial
filter w projects from sensor space to source space. BSS
approaches estimate the factors A and s(t) jointly through
an unsupervised process using a criteria such as minimizing
mutual information between sources.

Source Power Co-modulation. An alternative to unsu-
pervised BSS methods is using a supervised spatial-filtering
approach that leverages a continuous target variable z during
the decomposition. Source Power Co-modulation [6] is one
such method designed to find a spatial filter projecting the
data onto an estimated source component in which the band
power of ŝ(t) co-modulates with z optimally. We assume that
the EEG data has been segmented into e epochs x(e), and
that z is downsampled to one value per epoch z(e). Provided
that x(t) has been bandpass filtered to a narrow frequency
range, we can compute an estimate of the epoched target
variable z(e) ≈ φ(e) = Var[wTx] using the spatial filter w.
The objective function solving for the optimal spatial filter
w can then be defined as arg maxw Cov[φ(e), z(e)], subject
to the constraint that w has unit variance. The resulting
algorithm is referred to as SPoCλ and returns eigenvectors
forming each spatial filter wi and corresponding eigenvalues
ordered by covariance score. Since SPoC adheres to the
generative model outlined above, spatial patterns can be
recovered by multiplying the average covariance matrix Cx
of x(e) such that ai = Cxwi.

Dimensionality reduction of EEG data prior to applying
SPoC was performed to reduce overfitting and to simplify the
proceeding component selection step. A key assumption of
SPoCλ is that the input EEG data has been filtered to within
a narrow target frequency range of interest. We first filtered

the input data to the target frequency range, then performed
dimensionality reduction using spatio-spectral decomposition
(SSD) [7]. SSD maximizes the signal profile at a frequency
band of interest while simultaneously minimizing it in the
neighboring bands and has been shown to support the ex-
traction of oscillatory components [8]. We retained the first
10 SSD components and disregarded the remaining ones,
leaving a 10 dimensional oscillatory subspace corresponding
to the target frequency range. Epoch size, number of SPoC
components to retain, and number of epochs to train on were
optimized using a parameter grid search.

Frequency and motion profile parameter selection.
Head kinematics have been linked to alpha and beta wave
activity [9]; however, it remains a challenge to unravel
which motion properties of the hand and head and specific
frequency ranges are involved in moving participants explor-
ing the surrounding space. To investigate the co-modulation
of hand and head motion with oscillatory sources across
frequency bands and different kinds of motion, we performed
a search across theta and alpha frequency ranges for six
different motion profiles: magnitude of hand velocity and
acceleration, magnitude of head velocity and acceleration,
and magnitude of head minus hand velocity and accelera-
tion. Magnitude of velocity and acceleration profiles were
calculated by taking the magnitude of the instantaneous
velocity and instantaneous acceleration of the x, y, and z
rigid body coordinates, respectively. Similarly, head minus
hand profiles were calculated by subtracting hand position
from head position, then calculating instantaneous velocity
and acceleration on the difference.

Each frequency band of interest [f 0−∆f , f 0 + ∆f ] was
targeted by changing the SSD band settings, varying the
center frequency range f 0 from 5-13 Hz and keeping ∆f = 1
Hz constant. The flanking interval is set to f 0±3 Hz and the
bandstop filter was fixed at f 0 ± 4 Hz as suggested in [7].
Before performing SSD, a bandpass filter was applied to the
frequency range of interest. Scanning over 6 motion profiles
and 15 band settings resulted in 90 parameter configurations,
which returned 10 SPoCλ components each due to the re-
duced data rank after application of SSD. To simplify further
analysis, only the first five components were considered.

Evaluation Metrics. Spearman rank correlations were
computed to quantify the degree to which estimated os-
cillatory components co-modulate with the target motion
profile z. Since SPoC is a supervised learning algorithm,
we employed chronological 5-fold cross-validation to control
for overfitting [10]. In this scheme, four folds were used to
train each SPoC filter wi which was then applied to held-
out validation data x(t)test to get estimated source activations
ŝ(t)test. The test correlation for fold i between zaprox,i =
V ar[̂s(t)test,i], the band power approximation of ŝ, and (t)test
was then averaged across folds to get a mean correlation
score for each component. All correlations reported below
were calculated from folds withheld in ŝ(t)test.

In addition to correlation, the resulting SPoC components
were evaluated based on several criteria to select robust
sources. To ensure stability over time, the selection was lim-



ited to components whose correlation sign remained constant
across folds as originally suggested in [11]. Additionally, ob-
jective criteria were applied to automatically flag components
that displayed low autocorrelations or a focal topography,
see SASICA toolbox [14]. Though SASICA was originally
applied to ICA components, these settings also characterize
desirable SPoC components. If a component was rejected by
SASICA in any validation fold, it was rejected from further
analysis.

Linear Regression Comparison. We added a comparison
of the resulting SPoC components with linear regression
on channel-level power features to evaluate SPoCλ against
another supervised linear method.The same parameter grid
search and cross validation scheme are used with both
algorithms. Whereas SPoC returns components equal to the
rank of the data, regression will only return one.

III. EXPERIMENTAL SETUP

Participants. Thirty-two healthy participants (aged 21–
45 years, 14 men) took part in the experiment. All partic-
ipants gave written informed consent to participation and
the experimental protocol was approved by the local ethics
committee (protocol: GR 08 20170428). Three participants
were excluded from data analysis due to incomplete data or
difficulties in complying with the task requirements.

The Invisible Maze Task. Participants freely explored
an interactive sparse invisible maze environment by walking
and probing for virtual visual wall feedback with their hand,
delivered by a virtual reality (VR) headset. Four different
mazes (Fig. 1 B) were explored in three consecutive runs.
Upon collision of the hand with an invisible wall, an illu-
minated white disc was displayed 30cm behind the collision
point parallel to the invisible wall (Fig. 1 C). Due to the
complexity of the technical details, please consult [5]. In
summary, the task required participants to explore mazes to
build a spatial representation of the maze layout.

Data Collection & Preprocessing. EEG was recorded
using 160 actively amplified channels (BrainProducts MOVE
System) using an equidistant 128 channel electrode place-
ment cap and a 32 channel neck band (EasyCap); the ref-
erence electrode was placed between parietal electrodes and
two vEOG electrodes were placed under each eye. Signals
were sampled at 1kHz. Concurrent motion capture (6DOF,
position and orientation) of six rigid bodies (head, hand,
feet, lower and upper arm) was collected with a sampling
rate of 75Hz. Both data streams were aligned1, the age-of-
sample of the EEG data was corrected (66ms)2 and both
datastreams were resampled at 250 Hz. We applied a 6 Hz
zero-lag low pass FIR filter to smooth the motion data.
After transforming quaternion orientation to Euler angles,
we calculated time derivatives. Non-experimental segments
containing only minimal movements of participants were
removed from further analysis. Then, for EEG cleaning
purposes, continuous data was split into 1s epochs and an

1https://github.com/sccn/labstreaminglayer
2http://bemobil.bpn.tu-berlin.de/wiki/doku.php?id=software:lsl-test

automatic cleaning procedure was applied to remove the 10%
noisiest epochs [9].

Fig. 2. Median correlation ρ achieved across configurations for SPoCλ

and linear regression. Configurations from left to right: selected SPoCλ

components (SASICA), components of all motion profiles, components of
good motion profiles (magnitude of hand velocity and magnitude of head
acceleration).

IV. RESULTS.

The first 800 cleaned seconds of EEG and motion capture
data from each participant were epoched into 1 second
intervals and used for training SPoCλ as outlined above.
The performance of SPoCλ and linear regression across
parameter configurations and subjects is reported in Fig.
2 and Fig. 3. Fig. 2 reports the distribution of the
highest-correlating SPoCλ components and all regression
components across configurations and subjects. Across all
configurations SPoC (median ρmean = .13) out performed
the regression-based approach (median ρmean = .09). When
limiting to the best-performing velocity and acceleration
profiles, SPoC performance also surpassed the regression
performance (ρmean = .15; ρmean = .12 respectively). Fig.
3 reports ρmean corresponding to the SPoCλ component
with the highest correlation in each parameter configuration,
with error bars representing one standard deviation across
participants. Magnitude of head velocity performed best
with an average test correlation across folds and subjects of
ρ = .1352, followed by magnitude of the hand velocity with
an average correlation of ρ = .1348. Head hand difference
profiles performed worse than profiles consisting of only the
head or the hand velocity.

Overall 865 of the total 13050 possible SPoCλ components
passed the SASICA selection criteria with a median ρmean =
.16. There was a high variability in the number of compo-
nents selected across participants. First–ranked SPoC com-
ponents were more–often selected compared to later–ranked
ones, and better–performing motion profiles are also more
likely to pass selection criteria. Fig. 4 displays exemplary
scalp topographies obtained from one of the participants with
the most passing components across folds.



Fig. 3. Correlation ρmean of highest-correlating SPoC component (SPoCλ)
across profiles and frequencies. Error areas indicate the standard error of
the mean (SEM).

Fig. 4. Example spatial patterns across chronological folds with power
spectra. Top: subject 22, f0 = 7Hz, Magnitude of head acceleration.
Bottom: subject 27, f0 = 11 Hz, Magnitude of hand velocity.

V. DISCUSSION.

Overall, we observed a positive relationship between fil-
ter consistency across folds, passing selection criteria, and
the correlation value achieved. The correlation values we
obtained are similar to those found in other applications of
SPoC [11], [12]. Furthermore, we found similar filters across
subjects albeit with slight variation in their center frequency.
This suggests that similar to other methods, SPoC is sensitive
to inter-subject frequency variability as well as differences
in EEG recording quality.

To address questions of neuroscientific inquiry researchers
may intervene in the component selection process. To im-
prove consistency and plausibility of spatial filters regarding
the focus of research inquiry, similarity metrics and human
manual inspection based on a-priori assumptions about to-
pographies or expected co-modulation behavior may still
prove beneficial. The purpose of SPoC is not to isolate a
single source, but to find a subspace in which a combination
of sources co-modulate with a target variable. This introduces
a tradeoff–whereas BSS methods, e.g. ICA, may isolate lo-
calizable dipoles with little residual variance[13], SPoC finds
components of functional significance. However, distributed
source localization procedures allow the interested researcher
to localize sources of functional significance [15]. Such an
approach may be of significant interest in MoBI studies

aiming at a differentiation of frequency bands and specific
motion profiles across source components as introduced here.

This work proposes a method for extracting robust motion-
related source components in MoBI experiments. Either, the
extracted sources may be of direct interest to the researcher
or can be removed to clean the EEG recording from muscle,
since muscle activity is inherently tied to body movement [3],
or other movement co-modulating phenomena. For instance,
eye movement and electromyography data streams may serve
as target signals in SPoC directly reflecting specific muscle
activity. In conclusion, SPoC is a promising method for
extracting oscillatory sources that co-modulate with body
motion in MoBI experiments. SPoC components can be
selected based on objective criteria and used to investigate
brain and muscle responses as participants act in natural
environments.

REFERENCES

[1] S. Makeig, K. Gramann, T.-P. Jung, T. Sejnowski, H. Poizner ”Linking
brain, mind, and behavior.”, International Journal of Psychophysiology,
69(3), p.137, 2008.

[2] K. Gramann, T.-P. Jung, D.P. Ferris, C.-T. Lin, S. Makeig, ”Toward
a new cognitive neuroscience: modeling natural brain dynamics.”,
Frontiers in Human Neuroscience, 8:444, 2014.

[3] P. Reis, F. Hebenstreit, F. Gabsteiger, V. von Tscharner, M. Lochmann,
”Methodological aspects of EEG and body dynamics measurements
during motion.” Frontiers in Human Neuroscience, 8, 2014.

[4] J. T. Gwin, K. Gramann, S. Makeig, and D. P. Ferris ”Removal
of Movement Artifact From High-Density EEG Recorded During
Walking and Running”, Journal of Neurophysiology, 103:6, 3526-
3534, 2010.

[5] L. Gehrke, J.R. Iversen, S. Makeig, K. Gramann ”The Invisible Maze
Task (IMT): Interactive Exploration of Sparse Virtual Environments
to Investigate Action-Driven Formation of Spatial Representations”,
Springer International Publishing, pp.293–310, 2018.

[6] S. Daehne, F. Meinecke, S. Haufe, J. Hhne, M. Tangermann, K.-R.
Mller, V. Nikulin, ”SPoC: A novel framework for relating the am-
plitude of neuronal oscillations to behaviorally relevant parameters.”,
NeuroImage, 86, pp.111-122, 2014.

[7] V. Nikulin, G. Nolte and G. Curio, ”A novel method for reliable
and fast extraction of neuronal EEG/MEG oscillations on the basis
of spatio-spectral decomposition”, Klinische Neurophysiologie, vol.
42, no. 01, 2011.

[8] S. Haufe, S. Daehne and V. Nikulin, ”Dimensionality reduction for
the analysis of brain oscillations”, NeuroImage, vol. 101, pp. 583-597,
2014.

[9] K. Gramann, F. U. Hohlefeld, L. Gehrke, M. Klug ”Heading compu-
tation in the human retrosplenial complex during full-body rotation”,
biorXiv, doi:10.1101/417972, 2018.

[10] S. Lemm, B. Blankertz, T. Dickhaus and K. Mller, ”Introduction to
machine learning for brain imaging”, NeuroImage, vol. 56, no. 2, pp.
387-399, 2011.

[11] A. Meinel, S. Castano-Candamil, J. Reis and M. Tangermann, ”Pre-
Trial EEG-Based Single-Trial Motor Performance Prediction to En-
hance Neuroergonomics for a Hand Force Task”, 2016.

[12] A. Meinel, J. Castano-Candamil, S. Daehne, J. Reis and M. Tanger-
mann, ”EEG Band Power Predicts Single-Trial Reaction Time in a
Hand Motor Task”, 7th Annual International IEEE EMBS Conference
on Neural Engineering, 2015.

[13] A. Delorme, J. Palmer, J. Onton, R. Oostenveld, S. Makeig, Indepen-
dent EEG sources are dipolar. PLoS ONE, e30135, 7(2), 2012.

[14] M. Chaumon, D. Bishop and N. Busch, ”A practical guide to the
selection of independent components of the electroencephalogram for
artifact correction”, Journal of Neuroscience Methods, vol. 250, pp.
47-63, 2015.

[15] T. O. Zander, L. R. Krol, N. P. Birbaumer, K. Gramann ”Neuroadaptive
technology enables implicit cursor control based on medial prefrontal
cortex activity.”, Proceedings of the National Academy of Sciences of
the United States of America, 113(52), 1489814903., 2016.


