
Abstract

The Fittest Mario: An Evolutionary Computation Approach to 
Super Mario Brothers

Pedro Carrion Castagnola, Luke Guerdan, Marshall Lindsay, Jeffrey Ruffolo and Pooneh
Safayenikoo,

Department of Electrical Engineering and Computer Science 
University of Missouri, Columbia, U.S.A

Fitness function Crossover methods
Super Mario Bros is a classic platformer video game in
which the player tries to navigate Mario to the flag at the
end of the stage. During this time, the player must
successfully overcome obstacles and terrains in order to
progress. Our project implements an evolutionary
computation approach to finding a sequence of player
actions to beat the game. We experiment with several
operators for parent selection, crossover, mutation, and
fitness evaluation. Results show successful convergence
towards winning action sequences, with convergence
rate responding to changes in strategies. We also
observed different gameplay behaviors for chromosomes
evaluated using different fitness functions.

The chromosome is represented as a sequence of game
actions taken by the player (such as up, left, or right),
which when emulated result in a fitness score for the
given chromosome. We also used the index of game over
for crossover and mutation methods because after this
index the actions do not influence on the fitness. The
chromosome in our implementation is an object that
contains: a list of action sequences (integers), fitness
score and index of game over. Figure 1 shows a
representation of the chromosome.

Chromosome representation

Six different rewards were used; x position, coins, score,
and speed. These rewards were modeled using Equations
1 – 6. Speed was modeled three different ways
(Equations 3 – 6) in an attempt to find the fastest path to
completion. Each of the different fitness functions
resolved into different “player” behaviors.

Simulation environment

Parent selection
For parent selection, we compared strict elitism,
proportional selection and linear ranking (Figure 6). In
both (µ, λ) and (µ + λ) selection, λ offspring are
generated from µ parents by mutation method applied to
the parent pool. In (µ, λ), the µ individuals from only
offspring pool are selected based on a selection method
as the parents for next generation. On the other hand, in
(µ + λ), the µ individual from the µ parents and λ
offspring are selected based on a selection method for
next generation. These mechanisms are shown in Fig. 5.

Mutation methods
We made experiments changing the number of mutations
(mutating 5%, 10% and 20% of the number of genes),
selection of index for mutation and selection of new
action. Figure 9 shows the two probability distribution
functions used for the selection of index for mutation.
Figure 10 shows the results of mutating different number
of times using triangular distribution and mutation of
10% of the genes using uniform distribution.

We explored three variations on the process of selecting
the crossover points. The first was sampling two points
from the chromosome using a uniform distribution. The
second technique limited the distribution to only the
genes that Mario had used before dying. The third
technique limited sampling to the active genes, but
changed the sampling distribution to a normal, centered
on the point of death. Figure 7 demonstrate the second
and third strategies. Figure 8 shows the effects on best
and average chromosome fitness per generation for each
of the crossover strategies we tested.

References
1. Kautenja/gym-super-mario-bros. Github project 

https://github.com/Kautenja/gym-super-mario-bros
2. Chakraborty, U. K., Deb, K., & Chakraborty, M. (1996). 

Analysis of selection algorithms: A Markov chain 
approach. Evolutionary Computation, 4(2), 133-167.

Figure 1

We used gym-super-mario-bros, an OpenAI Gym
environment for Super Mario Bros on The Nintendo
Entertainment System (NES) using the nes-py emulator
[1]. This environment provides an easy-to-use, high-level
API for making commands in Super Mario Bros. Figure
2 shows the general pipeline of our experiments.

Figure 2

On all the experiment we used the following parameters
as a baseline:3000 actions per chromosome (maximum
number of actions), initial population of 40
chromosomes, 20 parents selection, 20 offspring created
each generation, fitness equal to the position on “x
coordinate”, and 100 generations to run in total.

Figure 3 and 4 show the maximum and average finesses
of equations 1 and 6 respectively.

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10


